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The X-/Ka-band (8.4-GHz/32.0-GHz) dichroic plate h2stalled at DSS 13 con-

tributes an estimated 3 K to the system noise temperature at 32.0 GHz. Approx-

imately 1 percent of the Ka-band incident field is reflected by the plate into the
300-K environment of the DSS-13 pedestal room. A low-cost, easily implemented

method of reducing the noise temperature is presented. Using a curved reflector,

the reflected field can be refocused into an 80-K cold load, reducing the noise tem-
perature contribution of the diehroie plate by about 2 K.

I. Introduction

The X-/Ka-band (8.4-GHz/32.0-GHz) dichroic plate installed at the DSS-13 beam waveguide antenna
contributes an estimated 3 K to the system noise temperature at 32.0 GHz. This amount is significant in

a low-noise system where the estimated total noise temperature is only 27 K at an elevation of 90 deg and
35 K at an elevation of 30 deg. Approximately 1 percent of the Ka-band incident field is reflected by the

plate into the 300-K environment of the DSS-13 pedestal room (Fig. 1). The reflected field is large since
the current dichroic plate design software at JPL is based on an incident plane wave, while the actual

incident field is either a spherical wave or a quadratic phase front, depending on whether M6 in Fig. 1 is

a flat plate (spherical wave) or a curved mirror (quadratic phase front).

Several options have been suggested to reduce the dichroic plate noise temperature. One option is to

redesign the plate to have a very small reflected field by using plane wave spectrum analysis to represent

an incident spherical wave or quadratic phase front by the sum of plane waves incident at all angles,

including imaginary angles. The plate would have a different hole size and shape for each incident angle.

To design and analyze a dichroic plate using this technique is a very difficult problem, with uncertain

results. A dichroic plate designed by this method may not have any better characteristics than the current

design, because of approximations in the computation, fabrication tolerances, and alignment. Another

method that may reduce the reflected field is to reposition the plate at the beam waist of the Ka-band
field after it is reflected off a curved mirror at M6. At the beam waist, the phase distribution is fairly flat

and the field resembles a plane wave. Since the dichroic plate is designed for a plane wave, the reflected

field is expected to be smaller. This option would involve redesigning the layout of the X- and Ka-band

feed systems, and could not be extended to similar dual-feed systems where M6 is not a curved mirror,

such as the X-/Ka-band system at DSS 24 and the S-/X-band (2.3 GHz for S-band) systems at DSS 13
and DSS 24.

The option presented in this article is to reduce the effective temperature that the reflected field sees.

The reflected field can be refocused with a curved mirror and directed to a small cold load (Fig. 2).
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To use JPL physical optics (PO) programs I for performance analysis of the ellipsoidal reflector, a

spherical wave expansion (SWE) of the measured data was utilized [1,2]. An SWE is a modal represen-

tation of the data, using vector spherical wave functions. With an SWE, the radiation patterns in the

far field and near field can be calculated accurately, even though the original pattern was measured at

only one distance. An SWE with 16 azimuthal modes and 160 polar modes was found to be sufficient to

represent the measured data. Using the SWE representation of the field with a phase center calculation

program, the phase center location of the radiation pattern can be found.
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Fig. 4. Reflected field measured patterns of (a) amplitude and (b) phase.
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1 R. E. Hodges and W. A. Imbriale, "Computer Program POMESH for Diffraction Analysis of Reflector Antennas" (internal
document), Jet Propulsion Laboratory, Pasadena, California, February 1992.
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III. Ellipsoidal Reflector Design

The size of the ellipsoidal reflector depends on two factors. First, the reflector must be large enough

to intercept most of the field scattered off the dichroic plate, tkay part of the field that spills past the

reflector will see the pedestal room temperature of 300 K. Second, the reflector must fit in the space

behind the dichroic plate. Figure 5 shows the space available behind the dichroic plate for mounting an

ellipsoidal reflector.

The curvature of the ellipsoidal reflector is determined by the desired positions of the two focal points

of the ellipsoid and the location of the center of the reflector itself. The location of the center of the

reflector was decided from the available space behind the dichroic plate. One focal point of the ellipsoid

is placed at the location of the image of the phase center of the incident field• The other focal point of

the ellipsoidal reflector depends upon the position and aperture size of the cold load. The cold load must

be located where there is enough room for it, and where no other parts of the feed system will interfere

in the radiation beam between the reflector and the load. To keep the cold load stable and the cost

low, the aperture diameter of the load should be kept small. Placing the cold load at the beam waist of

the focused field minimizes the aperture diameter. The ellipsoid geometry is given in Fig. 6. F1 is the

approximate location of the phase center of the scattered field, and F2 is the approximate position of the

cold load aperture.
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Fig. 5. Dichroic plate mounting frame: (a) side view and (b) back view.

IV. Cold Load Design

Using PO analysis computer programs, it was calculated that a Cold load with a 12.7-cm aperture

diameter located 106.7 cm away from the center of the reflector would intercept about 98 percent of the

total refocused power. A cone mounted to the front of the cold load could direct more of the power to

the load.
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Fig. 6. Ellipsoidal reflector geometry.

Table 1. Calculation of the noise temperature contribution.

AXIS OF

ROTATION

Source of

power

Incident on

dichroic plate

Reflected by

dichroic plate

Refocused

by reflector

Calculation of power

Distribution of power

1% reflected

95% refocused by reflector 5% not refocused by reflector

98% directed to cold load 2% not directed to cold load
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Total power, % (0.01)(0.95)(0.98) = 0.931 (0.01)(0.95)(0.02) = 0.019 (0.01)(0.05) = 0.05

Calculation of total noise temperature

Effective

temperature, K

Noise

temperature

contribution

80 (cold load) 300 (pedestal room)

(0.931%)(80 K) = 0.74 K (0.019%)(300 K) = 0.06 g

Total noise

temperature, K 0.74 -F 0.06 -I- 0.15 = 0.95

300 (pedestal room)

(0.05%)(300 K) = 0.15 K



,i_iq, ! V. Reduction in Noise Temperature

The current noise contribution from the dichroic plate has been estimated at 3 K at 32.0 GHz. Since

the pedestal room temperature is 300 K, about 1 percent of the field incident on the dichroic is scattered.

Calculations using PO analysis programs predict that 95 percent of the reflected field would be refocused

by the reflector, and 98 percent of the refocused field would be directed into the cold load. As shown

in Table 1, this results in a total noise temperature contribution of 1 K from the dichroic plate reflected

field, for a reduction of 2 K.

Vh Conclusion

The noise temperature contribution of the X-/Ka-band dichroic plate at DSS 13 could be reduced

from an estimated 3 K to about 1 K by refocusing the scattered field from the dichroic plate into a cold

load. The concept is a low-cost, low-risk alternative to redesigning the dichroic plate to have a smaller
reflected field, and is more flexible than repositioning the dichroic plate to the beam waist.
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